ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Scientific mission to track radwaste barrels on Atlantic seabed
A scientific mission led by the French National Centre for Scientific Research (CNRS) set sail this past weekend in the Northeast Atlantic to investigate the long-term impacts of radioactive waste dumped at sea between the 1950s and 1990s.
Naoya Matsui, Takahiro Maegawa, Kazuyuki Noborio, Ryuta Kasada, Yasushi Yamamoto, Satoshi Konishi
Fusion Science and Technology | Volume 64 | Number 3 | September 2013 | Pages 692-696
Test Blanket, Fuel Cycle, and Breeding | Proceedings of the Twentieth Topical Meeting on the Technology of Fusion Energy (TOFE-2012) (Part 2) Nashville, Tennessee, August 27-31, 2012 | doi.org/10.13182/FST13-A19173
Articles are hosted by Taylor and Francis Online.
Neutron transport and energy composition of neutron beam extracted from a cylindrical discharge type fusion device was studied by using the computer simulation code, MCNP. In this study, three concepts of neutron beam optics (reflector and moderator) were proposed and examined; combined reflector which consists of two layers of different materials, inserting a moderator into the reflector to thermalize the neutron beam, and bending the extraction channel to avoid direct extraction of high energy neutrons. Combined reflector system produces 3.2 times higher neutron flux than no reflector when using W and Fe as outer and inner reflectors. The beam convergence is not dependent on reflector materials. Polyethylene (PE) and Fe combination produces fast neutron beam where more than 90% of the neutrons are fast. Combination of PE and D2O produces more than 30% thermalized neutron beam, but it contains epithermal and fast neutrons. When using moderator (D2O), the thickness of which is over 30 cm, more than 90% of the neutrons are thermalized. The bend angle of 20° produces more than 80% thermalized neutron beam. Both inserting moderator and bending channel are effective to extract thermalized neutron beam. These results are useful for designing a neutron source which can produce specified neutron beam.