ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Scientific mission to track radwaste barrels on Atlantic seabed
A scientific mission led by the French National Centre for Scientific Research (CNRS) set sail this past weekend in the Northeast Atlantic to investigate the long-term impacts of radioactive waste dumped at sea between the 1950s and 1990s.
Mahmoud Z. Youssef, Russell Feder
Fusion Science and Technology | Volume 64 | Number 3 | September 2013 | Pages 571-581
Nuclear Systems: Analysis and Experiments | Proceedings of the Twentieth Topical Meeting on the Technology of Fusion Energy (TOFE-2012) (Part 2) Nashville, Tennessee, August 27-31, 2012 | doi.org/10.13182/FST64-571
Articles are hosted by Taylor and Francis Online.
The upper, equatorial, and lower diagnostics port plugs in ITER will include numerous intermingling labyrinths and many streaming paths whose impact should be carefully studied. For this purpose, the 3-D Discrete Ordinates code, Attila, has been routinely used by PPPL/UCLA to assess the nuclear field in these geometrically complex plugs both during operation and after shutdown. In this paper we describe the calculation procedure followed and the input parameters/assumptions applied to assess the shutdown dose rates (SDDR) everywhere with emphasize on their values inside the generic equatorial port plug (GEPP) and its inter-space extension area. Factors inherent in the Discrete Ordinates method that impact the accuracy of the results (e.g. quadrature sets used, boundary conditions applied, etc.) are discussed. Means to minimize streaming through straight gaps and open channels present in the GEPP are presented in this paper, along with an examination of their effectiveness in reducing the SDDR in the port inter-space area.