ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
INL’s Teton supercomputer open for business
Idaho National Laboratory has brought its newest high‑performance supercomputer, named Teton, online and made it available to users through the Department of Energy’s Nuclear Science User Facilities program. The system, now the flagship machine in the lab’s Collaborative Computing Center, quadruples INL’s total computing capacity and enters service as the 85th fastest supercomputer in the world.
Satoshi Fukada, Makoto Ueda, Kazutaka Izumi
Fusion Science and Technology | Volume 64 | Number 3 | September 2013 | Pages 538-542
Fusion Technologies: Heating and Fueling | Proceedings of the Twentieth Topical Meeting on the Technology of Fusion Energy (TOFE-2012) (Part 2) Nashville, Tennessee, August 27-31, 2012 | doi.org/10.13182/FST13-A19149
Articles are hosted by Taylor and Francis Online.
Multi-component adsorption isotherm is determined experimentally when He, H2 (or D2) and CH4 are adsorbed on activated carbon (AC) plated on a cryopanel cooled at cryogenic temperature and desorbed at room one. It is correlated to the Langmuir-Freundlich-type one. The equilibrium isotherms for their respective single-component adsorption processes are correlated in terms of the Langmuir-Freundlich-type ones, and the isotherm when the three components of He, H2 and CH4 are adsorbed at the same time is correlated in terms of a naturally-extended multi-component one without any changes in the original constants included in the single-component one. Rates of the isotopic exchange reaction of D atom between CH4 and D2 on AC between 10 K and room temperature are also determined. After eliminating the effects of natural isotope of 13C included in CH3D, CH2D2, CHD3, CD4 on mass-spectrometric measurements, it was found that the isotopic exchange rate of CH4 + D2 = CH3D +HD and so on was found to be so late that any detectable effect was not observed.