ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Nuclear and Emerging Technologies for Space (NETS 2025)
May 4–8, 2025
Huntsville, AL|Huntsville Marriott and the Space & Rocket Center
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Sellafield waste vault yields 1960s-era finds
A 1960s Electrolux vacuum cleaner was among the more unusual items workers removed from one of the world’s oldest nuclear waste stores at the United Kingdom’s Sellafield nuclear site.
Satoshi Fukada, Makoto Ueda, Kazutaka Izumi
Fusion Science and Technology | Volume 64 | Number 3 | September 2013 | Pages 538-542
Fusion Technologies: Heating and Fueling | Proceedings of the Twentieth Topical Meeting on the Technology of Fusion Energy (TOFE-2012) (Part 2) Nashville, Tennessee, August 27-31, 2012 | doi.org/10.13182/FST13-A19149
Articles are hosted by Taylor and Francis Online.
Multi-component adsorption isotherm is determined experimentally when He, H2 (or D2) and CH4 are adsorbed on activated carbon (AC) plated on a cryopanel cooled at cryogenic temperature and desorbed at room one. It is correlated to the Langmuir-Freundlich-type one. The equilibrium isotherms for their respective single-component adsorption processes are correlated in terms of the Langmuir-Freundlich-type ones, and the isotherm when the three components of He, H2 and CH4 are adsorbed at the same time is correlated in terms of a naturally-extended multi-component one without any changes in the original constants included in the single-component one. Rates of the isotopic exchange reaction of D atom between CH4 and D2 on AC between 10 K and room temperature are also determined. After eliminating the effects of natural isotope of 13C included in CH3D, CH2D2, CHD3, CD4 on mass-spectrometric measurements, it was found that the isotopic exchange rate of CH4 + D2 = CH3D +HD and so on was found to be so late that any detectable effect was not observed.