ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
Tetsushi Hiromoto et al.
Fusion Science and Technology | Volume 64 | Number 3 | September 2013 | Pages 533-537
Fusion Technologies: Heating and Fueling | Proceedings of the Twentieth Topical Meeting on the Technology of Fusion Energy (TOFE-2012) (Part 2) Nashville, Tennessee, August 27-31, 2012 | doi.org/10.13182/FST13-A19148
Articles are hosted by Taylor and Francis Online.
IFMIF-EVEDA progresses in Japan as one of the EU-Japan Broader Approach Activities. The research is performed to decide whether or not IFMIF is constructed after some uncertainties included in the design are clarified. One of the uncertainties included in the Li purification process is to prove experimentally the removal of 1 weight ppm (wppm) T and 10 wppm D from flowing Li for safety.Our research group is experimentally investigating the recovery of hydrogen isotopes including T not only in static Li but also in fluidized Li. In the past study, hydrofluoric acid (HF) treatment of Y is successful in removing oxide inevitably formed on its surfaces. The recovery of hydrogen isotopes including T less than 1 wppm is successfully proved with use of the HF-treated Y at 300°C, which is the IFMIF hot-trap temperature. Mass-transfer rates of hydrogen isotopes in the liquid Li and Y under stirred conditions were determined.In addition, we developed a way to determine an amount of D or T dissolved in Li and Y by using a dissolution method. The quantitative D analysis is performed by using techniques of HNO3 solution for Y and H2O one for Li. The distribution coefficient between Li and Y is determined as a function of temperature and contact time.