ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
James P. Blanchard, Carl Martin
Fusion Science and Technology | Volume 64 | Number 3 | September 2013 | Pages 435-439
ARIES | Proceedings of the Twentieth Topical Meeting on the Technology of Fusion Energy (TOFE-2012) (Part 2) Nashville, Tennessee, August 27-31, 2012 | doi.org/10.13182/FST12-512
Articles are hosted by Taylor and Francis Online.
The ARIES project is currently proposing an all-tungsten divertor for their tokamak designs. In designing such a component, fracture will be a critical failure mechanism, due to the limited ductility of the tungsten. Hence, this paper presents a series of fracture mechanics-based analyses to demonstrate the feasibility of using an all-tungsten divertor in a commercial device. The analyses presented here employ a commercial finite element code (ANSYS) to carry out three-dimensional thermal, mechanical, and fracture calculations. Due to the inelastic deformations produced by the high temperatures and stresses in the component, the fracture calculations employ the J-Integral, a path-independent contour integral that estimates the strain energy release rate for a crack of assumed geometry. Elliptical surface cracks are introduced both inside and outside the coolant channel and steady state calculations are carried out for both full power and cold shutdown conditions. It is determined that the critical crack is on the inside of the coolant channel and the largest forcing is during full power. In addition, transient calculations are carried out to simulate edge localized modes (ELMs) in the plasma and conclusions are drawn with respect to the severity of these events and their effect on the lifetime of the component. Finally, thermal creep is considered as a potential failure mode.