ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
PR: American Nuclear Society welcomes Senate confirmation of Ted Garrish as the DOE’s nuclear energy secretary
Washington, D.C. — The American Nuclear Society (ANS) applauds the U.S. Senate's confirmation of Theodore “Ted” Garrish as Assistant Secretary for Nuclear Energy at the U.S. Department of Energy (DOE).
“On behalf of over 11,000 professionals in the fields of nuclear science and technology, the American Nuclear Society congratulates Mr. Garrish on being confirmed by the Senate to once again lead the DOE Office of Nuclear Energy,” said ANS President H.M. "Hash" Hashemian.
Haibo Liu, Kaiming Feng
Fusion Science and Technology | Volume 54 | Number 4 | November 2008 | Pages 970-977
Technical Paper | doi.org/10.13182/FST08-A1912
Articles are hosted by Taylor and Francis Online.
The Chinese helium-cooled solid breeder (CH-HCSB) test blanket module (TBM) is designed to be tested in ITER, and its aim is to validate the feasibility of a DEMO fusion reactor. The thermal-hydraulic transient analysis has to testify that the TBM and its helium cooling system (HCS) will not impact the safe operation of ITER under both normal and accidental conditions. In order to simulate the transient accidents, the TBM and HCS are modeled using the RELAP5/MOD3 system code. The steady-state results indicate that the designed TBM inlet/outlet temperatures are obtained and the temperature of first-wall (FW) structural material is below the limit. An ex-vessel loss-of-coolant accident (LOCA) will induce the melting of FW beryllium armor after ~80 s of LOCA initiation, and some controlling measures have to be taken before melting. The pressurization of the vacuum vessel induced by an in-vessel LOCA is within the allowable value of the ITER design. Because of pressurization of the purge gas system, the tritium extraction system has to be isolated from the TBM quickly when an in-box LOCA happens. Based on the results, the design of the CH-HCSB TBM could be further modified in order to assure the safety of the TBM and ITER, from an engineering point of view.