ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Haibo Liu, Kaiming Feng
Fusion Science and Technology | Volume 54 | Number 4 | November 2008 | Pages 970-977
Technical Paper | doi.org/10.13182/FST08-A1912
Articles are hosted by Taylor and Francis Online.
The Chinese helium-cooled solid breeder (CH-HCSB) test blanket module (TBM) is designed to be tested in ITER, and its aim is to validate the feasibility of a DEMO fusion reactor. The thermal-hydraulic transient analysis has to testify that the TBM and its helium cooling system (HCS) will not impact the safe operation of ITER under both normal and accidental conditions. In order to simulate the transient accidents, the TBM and HCS are modeled using the RELAP5/MOD3 system code. The steady-state results indicate that the designed TBM inlet/outlet temperatures are obtained and the temperature of first-wall (FW) structural material is below the limit. An ex-vessel loss-of-coolant accident (LOCA) will induce the melting of FW beryllium armor after ~80 s of LOCA initiation, and some controlling measures have to be taken before melting. The pressurization of the vacuum vessel induced by an in-vessel LOCA is within the allowable value of the ITER design. Because of pressurization of the purge gas system, the tritium extraction system has to be isolated from the TBM quickly when an in-box LOCA happens. Based on the results, the design of the CH-HCSB TBM could be further modified in order to assure the safety of the TBM and ITER, from an engineering point of view.