ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
Sam Altman steps down as Oklo board chair
Advanced nuclear company Oklo Inc. has new leadership for its board of directors as billionaire Sam Altman is stepping down from the position he has held since 2015. The move is meant to open new partnership opportunities with OpenAI, where Altman is CEO, and other artificial intelligence companies.
J. M. Carmona, K. J. McCarthy, V. Tribaldos, R. Balbín
Fusion Science and Technology | Volume 54 | Number 4 | November 2008 | Pages 962-969
Technical Paper | doi.org/10.13182/FST08-A1911
Articles are hosted by Taylor and Francis Online.
First impurity ion temperature profiles obtained using an active diagnostic system, recently installed on the TJ-II stellarator, are presented. This diagnostic consists of a multichannel spectrometer and a compact diagnostic neutral beam injector system optimized for performing charge-exchange recombination spectroscopy. Here, after summarizing the experimental setup, details of the system alignment and calibration, as well as the data analysis method adopted, are presented. Next, impurity ion temperature profiles, determined from C VI emission line widths (at 529.06 nm), are presented for a range of plasma conditions (different densities plus two injected electron cyclotron resonance heating powers) in order to highlight the system capabilities. Then, the comportment of core impurity ion temperature for an electron density scan (4 × 1018 to 9 × 1018 m-3) is examined. It reveals a clear minimum between <ne> = 6 × 1018 and 8 × 1018 m-3 that coincides with the values for the transition from the electron-to-ion root of the radial electric field. Finally, these results are compared with ion temperatures determined by passive methods to evaluate the system performance, and the physics behind the observed impurity ion temperature behavior is examined.