ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Webinar: MC&A and safety in advanced reactors in focus
Towell
Russell
Prasad
The American Nuclear Society’s Nuclear Nonproliferation Policy Division recently hosted a webinar on updating material control and accounting (MC&A) and security regulations for the evolving field of advanced reactors.
Moderator Shikha Prasad (CEO, Srijan LLC) was joined by two presenters, John Russell and Lester Towell, who looked at how regulations that were historically developed for traditional light water reactors will apply to the next generation of nuclear technology and what changes need to be made.
J. M. Carmona, K. J. McCarthy, V. Tribaldos, R. Balbín
Fusion Science and Technology | Volume 54 | Number 4 | November 2008 | Pages 962-969
Technical Paper | doi.org/10.13182/FST08-A1911
Articles are hosted by Taylor and Francis Online.
First impurity ion temperature profiles obtained using an active diagnostic system, recently installed on the TJ-II stellarator, are presented. This diagnostic consists of a multichannel spectrometer and a compact diagnostic neutral beam injector system optimized for performing charge-exchange recombination spectroscopy. Here, after summarizing the experimental setup, details of the system alignment and calibration, as well as the data analysis method adopted, are presented. Next, impurity ion temperature profiles, determined from C VI emission line widths (at 529.06 nm), are presented for a range of plasma conditions (different densities plus two injected electron cyclotron resonance heating powers) in order to highlight the system capabilities. Then, the comportment of core impurity ion temperature for an electron density scan (4 × 1018 to 9 × 1018 m-3) is examined. It reveals a clear minimum between <ne> = 6 × 1018 and 8 × 1018 m-3 that coincides with the values for the transition from the electron-to-ion root of the radial electric field. Finally, these results are compared with ion temperatures determined by passive methods to evaluate the system performance, and the physics behind the observed impurity ion temperature behavior is examined.