ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
S. I. Abdel-Khalik, L. Crosatti, D. L. Sadowski, S. Shin, J. B. Weathers, M. Yoda, ARIES Team
Fusion Science and Technology | Volume 54 | Number 3 | October 2008 | Pages 864-877
Technical Paper | Aries-Cs Special Issue | doi.org/10.13182/FST08-A1907
Articles are hosted by Taylor and Francis Online.
This paper describes a numerical and experimental investigation in support of the ARIES-CS divertor design, which selected a modular, helium-cooled, T-tube design that can accommodate a peak heat load of 10 MW/m2. Numerical analyses were carried out using the FLUENT computational fluid dynamics software package to evaluate the thermal performance of the divertor at the nominal design and operating conditions. Sensitivity studies were also performed to determine the effect of variations in geometry and operating conditions resulting from manufacturing tolerances and/or flow maldistribution between modules. The results indicate that the selected design is "robust" with respect to such anticipated variations in design and operational parameters and that a peak heat flux of 10 MW/m2 can be accommodated within the constraints dictated by material properties. Extremely high heat transfer coefficients [>40 kW/(m2K)] were predicted by the numerical model; these values were judged to be "outside the experience base" for gas-cooled engineering systems. Hence, an experimental investigation was undertaken to verify the results of the numerical model. Variations of the local heat transfer coefficient within an air-cooled, geometrically similar test module were measured at the same Reynolds number as the actual helium-cooled divertor. Close agreement between the model predictions and experimental data was obtained. The results of this investigation provide added confidence in the results of the numerical model used to design the ARIES-CS divertor and its applicability to other gas-cooled high-heat flux components.