ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
Sam Altman steps down as Oklo board chair
Advanced nuclear company Oklo Inc. has new leadership for its board of directors as billionaire Sam Altman is stepping down from the position he has held since 2015. The move is meant to open new partnership opportunities with OpenAI, where Altman is CEO, and other artificial intelligence companies.
S. I. Abdel-Khalik, L. Crosatti, D. L. Sadowski, S. Shin, J. B. Weathers, M. Yoda, ARIES Team
Fusion Science and Technology | Volume 54 | Number 3 | October 2008 | Pages 864-877
Technical Paper | Aries-Cs Special Issue | doi.org/10.13182/FST08-A1907
Articles are hosted by Taylor and Francis Online.
This paper describes a numerical and experimental investigation in support of the ARIES-CS divertor design, which selected a modular, helium-cooled, T-tube design that can accommodate a peak heat load of 10 MW/m2. Numerical analyses were carried out using the FLUENT computational fluid dynamics software package to evaluate the thermal performance of the divertor at the nominal design and operating conditions. Sensitivity studies were also performed to determine the effect of variations in geometry and operating conditions resulting from manufacturing tolerances and/or flow maldistribution between modules. The results indicate that the selected design is "robust" with respect to such anticipated variations in design and operational parameters and that a peak heat flux of 10 MW/m2 can be accommodated within the constraints dictated by material properties. Extremely high heat transfer coefficients [>40 kW/(m2K)] were predicted by the numerical model; these values were judged to be "outside the experience base" for gas-cooled engineering systems. Hence, an experimental investigation was undertaken to verify the results of the numerical model. Variations of the local heat transfer coefficient within an air-cooled, geometrically similar test module were measured at the same Reynolds number as the actual helium-cooled divertor. Close agreement between the model predictions and experimental data was obtained. The results of this investigation provide added confidence in the results of the numerical model used to design the ARIES-CS divertor and its applicability to other gas-cooled high-heat flux components.