ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
S. I. Abdel-Khalik, L. Crosatti, D. L. Sadowski, S. Shin, J. B. Weathers, M. Yoda, ARIES Team
Fusion Science and Technology | Volume 54 | Number 3 | October 2008 | Pages 864-877
Technical Paper | Aries-Cs Special Issue | doi.org/10.13182/FST08-A1907
Articles are hosted by Taylor and Francis Online.
This paper describes a numerical and experimental investigation in support of the ARIES-CS divertor design, which selected a modular, helium-cooled, T-tube design that can accommodate a peak heat load of 10 MW/m2. Numerical analyses were carried out using the FLUENT computational fluid dynamics software package to evaluate the thermal performance of the divertor at the nominal design and operating conditions. Sensitivity studies were also performed to determine the effect of variations in geometry and operating conditions resulting from manufacturing tolerances and/or flow maldistribution between modules. The results indicate that the selected design is "robust" with respect to such anticipated variations in design and operational parameters and that a peak heat flux of 10 MW/m2 can be accommodated within the constraints dictated by material properties. Extremely high heat transfer coefficients [>40 kW/(m2K)] were predicted by the numerical model; these values were judged to be "outside the experience base" for gas-cooled engineering systems. Hence, an experimental investigation was undertaken to verify the results of the numerical model. Variations of the local heat transfer coefficient within an air-cooled, geometrically similar test module were measured at the same Reynolds number as the actual helium-cooled divertor. Close agreement between the model predictions and experimental data was obtained. The results of this investigation provide added confidence in the results of the numerical model used to design the ARIES-CS divertor and its applicability to other gas-cooled high-heat flux components.