ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
A webinar, and a new opportunity to take ANS’s CNP Exam
Applications are now open for the fall 2025 testing period for the American Nuclear Society’s Certified Nuclear Professional (CNP) exam. Applications are being accepted through October 14, and only three testing sessions are offered per year, so it is important to apply soon. The test will be administered from November 12 through December 16. To check eligibility and schedule your exam, click here.
In addition, taking place tomorrow (September 19) from 12:00 noon to 1:00 p.m. (CDT), ANS will host a new webinar, “How to Become a Certified Nuclear Professional.” More information is available below in this article.
A. R. Raffray, L. El-Guebaly, S. Malang, X. R. Wang, L. Bromberg, T. Ihli, B. Merrill, L. Waganer, ARIES-CS Team
Fusion Science and Technology | Volume 54 | Number 3 | October 2008 | Pages 725-746
Technical Paper | Aries-Cs Special Issue | doi.org/10.13182/FST08-4
Articles are hosted by Taylor and Francis Online.
The ARIES-CS team has concluded an integrated study of a compact stellarator power plant, involving physics and engineering design optimization. Key engineering considerations include the size of the power core, access for maintenance, and the minimum distance required between the plasma and the coil to provide acceptable shielding and breeding. Our preferred power core option in a three-field-period configuration is a dual-coolant (He + Pb-17Li) ferritic steel modular blanket concept coupled with a Brayton power cycle and a port-based maintenance scheme. In parallel with a physics effort to help determine the location and peak heat load to the divertor, we developed a helium-cooled W alloy/ferritic steel divertor design able to accommodate 10 MW/m2. We also developed an intercoil structure design to accommodate the electromagnetic forces within each field period while allowing for penetrations required for maintenance, plasma control, coolant lines, and supporting legs for the in-vessel components.This paper summarizes the key engineering outcomes from the study. The engineering design of the fusion power core components (including the blanket and divertor) are described and key results from the supporting analyses presented, including stress analyses of the components and thermal-hydraulic analyses of the power core coupled to a Brayton cycle. The preferred port-based maintenance scheme is briefly described and the integration of the power core is discussed. The key stellarator-specific challenges affecting the design are highlighted, including the impact of the minimum plasma-coil distance, the maintenance, integration, and coil design requirements, and the need for alpha power accommodation.