ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
2021 Student Conference
April 8–10, 2021
Virtual Meeting
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2021
Jul 2020
Latest Journal Issues
Nuclear Science and Engineering
March 2021
Nuclear Technology
February 2021
Fusion Science and Technology
January 2021
Latest News
Fukiushima Daiichi: 10 years on
The Fukushima Daiichi site before the accident. All images are provided courtesy of TEPCO unless noted otherwise.
It was a rather normal day back on March 11, 2011, at the Fukushima Daiichi nuclear plant before 2:45 p.m. That was the time when the Great Tohoku Earthquake struck, followed by a massive tsunami that caused three reactor meltdowns and forever changed the nuclear power industry in Japan and worldwide. Now, 10 years later, much has been learned and done to improve nuclear safety, and despite many challenges, significant progress is being made to decontaminate and defuel the extensively damaged Fukushima Daiichi reactor site. This is a summary of what happened, progress to date, current situation, and the outlook for the future there.
L. P. Ku, P. R. Garabedian, J. Lyon, A. Turnbull, A. Grossman, T. K. Mau, M. Zarnstorff, ARIES Team
Fusion Science and Technology | Volume 54 | Number 3 | October 2008 | Pages 673-693
Technical Paper | Aries-Cs Special Issue | dx.doi.org/10.13182/FST08-A1899
Articles are hosted by Taylor and Francis Online.
Novel stellarator configurations have been developed for ARIES-CS. These configurations are optimized to provide good plasma confinement and flux surface integrity at high beta. Modular coils have been designed for them in which the space needed for the breeding blanket and radiation shielding was specifically targeted such that reactors generating GW electrical powers would require only moderate major radii (<10 m). These configurations are quasi-axially symmetric in the magnetic field topology and have small numbers of field periods (3) and low aspect ratios (6). The baseline design chosen for detailed systems and power plant studies has three field periods, aspect ratio 4.5, and major radius 7.5 m operating at ~ 6.5% to yield 1 GW of electric power. The shaping of the plasma accounts for 75% of the rotational transform. The effective helical ripples are very small (<0.6% everywhere), and the energy loss of alpha particles is calculated to be 5% when operating in high-density regimes. An interesting feature in this configuration is that instead of minimizing all residues in the magnetic spectrum, we preferentially retained a small amount of the nonaxisymmetric mirror field. The presence of this mirror and its associated helical field alters the ripple distribution, resulting in the reduced ripple-trapped loss of alpha particles despite the long connection length in a tokamak-like field structure. Additionally, we discuss two other potentially attractive classes of configurations, both quasi-axisymmetric: one with only two field periods, very low aspect ratios (~2.5), and less complex coils, and the other with the plasma shaping designed to produce low-shear rotational transform so as to ensure the robustness and integrity of flux surfaces when operating at high .