ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
2021 Student Conference
April 8–10, 2021
Virtual Meeting
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2021
Jul 2020
Latest Journal Issues
Nuclear Science and Engineering
March 2021
Nuclear Technology
February 2021
Fusion Science and Technology
January 2021
Latest News
Fukiushima Daiichi: 10 years on
The Fukushima Daiichi site before the accident. All images are provided courtesy of TEPCO unless noted otherwise.
It was a rather normal day back on March 11, 2011, at the Fukushima Daiichi nuclear plant before 2:45 p.m. That was the time when the Great Tohoku Earthquake struck, followed by a massive tsunami that caused three reactor meltdowns and forever changed the nuclear power industry in Japan and worldwide. Now, 10 years later, much has been learned and done to improve nuclear safety, and despite many challenges, significant progress is being made to decontaminate and defuel the extensively damaged Fukushima Daiichi reactor site. This is a summary of what happened, progress to date, current situation, and the outlook for the future there.
Baojun Liu, Nazir P. Kherani, Stefan Zukotynski, Armando B. Antoniazzi, Kevin P. Chen
Fusion Science and Technology | Volume 54 | Number 2 | August 2008 | Pages 627-630
Technical Paper | Process Applications | dx.doi.org/10.13182/FST08-A1893
Articles are hosted by Taylor and Francis Online.
We report on a simple and versatile method for the integration of tritium in semiconductor materials. A variety of semiconductor materials are exposed to tritium (T2) gas at pressures of up to 120 bar and temperatures of up to 250 °C. Tritiated materials include hydrogenated amorphous silicon (a-Si:H), crystalline silicon (c-Si), silica and carbon nanotubes (CNT). Deep ultra-violet laser irradiation was used to lock tritium in silica films. Effusion measurements show the presence of stable tritium in silicon, silica and CNTs up to 400 °C. IR absorption spectra show a Si-T stretching mode at 1200 cm-1 indicating the formation of stable Si-T bonds in a-Si:H. SIMS measurements show that the penetration depth of tritium in a-Si:H and c-Si is 150 and 10 nm, respectively; the concentration of tritium locked in a-Si:H and c-Si is 20 and 4 at.%, respectively. In tritiated silica, 248-nm UV laser irradiation locks the permeated tritium at stable chemical bonding sites in the silica lattice. Thermal effusion measurement shows that 0.5 wt.% tritium can be stably immobilized in CNTs. The application of tritiated silicon as a cold electron source is demonstrated.