ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Japan gets new U for enrichment as global power and fuel plans grow
President Trump is in Japan today, with a visit with new Prime Minister Sanae Takaichi on the agenda. Takaichi, who took office just last week as Japan’s first female prime minister, has already spoken in favor of nuclear energy and of accelerating the restart of Japan’s long-shuttered power reactors, as Reuters and others have reported. Much of the uranium to power those reactors will be enriched at Japan’s lone enrichment facility—part of Japan Nuclear Fuel Ltd.’s Rokkasho fuel complex—which accepted its first delivery of fresh uranium hexafluoride (UF₆) in 11 years earlier this month.
Baojun Liu, Nazir P. Kherani, Stefan Zukotynski, Armando B. Antoniazzi, Kevin P. Chen
Fusion Science and Technology | Volume 54 | Number 2 | August 2008 | Pages 627-630
Technical Paper | Process Applications | doi.org/10.13182/FST08-A1893
Articles are hosted by Taylor and Francis Online.
We report on a simple and versatile method for the integration of tritium in semiconductor materials. A variety of semiconductor materials are exposed to tritium (T2) gas at pressures of up to 120 bar and temperatures of up to 250 °C. Tritiated materials include hydrogenated amorphous silicon (a-Si:H), crystalline silicon (c-Si), silica and carbon nanotubes (CNT). Deep ultra-violet laser irradiation was used to lock tritium in silica films. Effusion measurements show the presence of stable tritium in silicon, silica and CNTs up to 400 °C. IR absorption spectra show a Si-T stretching mode at 1200 cm-1 indicating the formation of stable Si-T bonds in a-Si:H. SIMS measurements show that the penetration depth of tritium in a-Si:H and c-Si is 150 and 10 nm, respectively; the concentration of tritium locked in a-Si:H and c-Si is 20 and 4 at.%, respectively. In tritiated silica, 248-nm UV laser irradiation locks the permeated tritium at stable chemical bonding sites in the silica lattice. Thermal effusion measurement shows that 0.5 wt.% tritium can be stably immobilized in CNTs. The application of tritiated silicon as a cold electron source is demonstrated.