ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Webinar: MC&A and safety in advanced reactors in focus
Towell
Russell
Prasad
The American Nuclear Society’s Nuclear Nonproliferation Policy Division recently hosted a webinar on updating material control and accounting (MC&A) and security regulations for the evolving field of advanced reactors.
Moderator Shikha Prasad (CEO, Srijan LLC) was joined by two presenters, John Russell and Lester Towell, who looked at how regulations that were historically developed for traditional light water reactors will apply to the next generation of nuclear technology and what changes need to be made.
C. J. Caldwell-Nichols, H.-D. Adami, N. Bekris, D. Demange, M. Glugla, F. Kramer, K.-H. Simon
Fusion Science and Technology | Volume 54 | Number 2 | August 2008 | Pages 599-602
Technical Paper | Process Applications | doi.org/10.13182/FST08-A1886
Articles are hosted by Taylor and Francis Online.
After 8 years of operation at the CAPER facility at the Tritium Laboratory Karlsruhe, a permeator used to separate hydrogen species from processed gases ceased operation due to multiple heater failures. This was subjected to post service examination to find the cause of the failures. This paper describe the methods used to locate the failures in the heaters and the likely cause. It was also necessary to determine the tritium inventory embedded in the structure for safe disposal. Destructive examination, adapted from a full combustion technique, was used on sections of the permeator. A fine black powder deposit, presumed to be mostly carbon, coated the surfaces of the inlet section of the feed side. This powder contained nearly half of the tritium within the permeator. The likely source of the powder and the consequences for the operation and eventual decommissioning of the ITER Tritium Plant are discussed. A failed turbomolecular pump from CAPER was also examined. There was evidence of wear on the emergency support bearing, but more importantly, when the pump internals were exposed to the glove box atmosphere (dry air) large quantities of tritium were rapidly released, this despite the isotopic swamping before removal from the CAPER glove box. Significant uptake of tritium in electrical insulation was also found.