ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Plans for Poland’s first nuclear power plant continue to progress
Building Poland’s nuclear program from the ground up is progressing with Poland’s first nuclear power plant project: three AP1000 reactors at the Choczewo site in the voivodeship of Pomerania.
The Polish state-owned utility Polskie Elektrownie Jądrowe has announced some recent developments over the past few months, including turbine island procurement and strengthened engagement with domestic financial institutions, in addition to new data from the country’s Energy Ministry showing record‑high public acceptance, which demonstrates growing nuclear momentum in the country.
C. J. Caldwell-Nichols, H.-D. Adami, N. Bekris, D. Demange, M. Glugla, F. Kramer, K.-H. Simon
Fusion Science and Technology | Volume 54 | Number 2 | August 2008 | Pages 599-602
Technical Paper | Process Applications | doi.org/10.13182/FST08-A1886
Articles are hosted by Taylor and Francis Online.
After 8 years of operation at the CAPER facility at the Tritium Laboratory Karlsruhe, a permeator used to separate hydrogen species from processed gases ceased operation due to multiple heater failures. This was subjected to post service examination to find the cause of the failures. This paper describe the methods used to locate the failures in the heaters and the likely cause. It was also necessary to determine the tritium inventory embedded in the structure for safe disposal. Destructive examination, adapted from a full combustion technique, was used on sections of the permeator. A fine black powder deposit, presumed to be mostly carbon, coated the surfaces of the inlet section of the feed side. This powder contained nearly half of the tritium within the permeator. The likely source of the powder and the consequences for the operation and eventual decommissioning of the ITER Tritium Plant are discussed. A failed turbomolecular pump from CAPER was also examined. There was evidence of wear on the emergency support bearing, but more importantly, when the pump internals were exposed to the glove box atmosphere (dry air) large quantities of tritium were rapidly released, this despite the isotopic swamping before removal from the CAPER glove box. Significant uptake of tritium in electrical insulation was also found.