ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
NN Asks: What did you learn from ANS’s Nuclear 101?
Mike Harkin
When ANS first announced its new Nuclear 101 certificate course, I was excited. This felt like a course tailor-made for me, a transplant into the commercial nuclear world. I enrolled for the inaugural session held in November 2024, knowing it was going to be hard (this is nuclear power, of course)—but I had been working on ramping up my knowledge base for the past year, through both my employer and at a local college.
The course was a fast-and-furious roller-coaster ride through all the key components of the nuclear power industry, in one highly challenging week. In fact, the challenges the students experienced caught even the instructors by surprise. Thankfully, the shared intellectual stretch we students all felt helped us band together to push through to the end.
We were all impressed with the quality of the instructors, who are some of the top experts in the field. We appreciated not only their knowledge base but their support whenever someone struggled to understand a concept.
Joseph R. Wermer et al.
Fusion Science and Technology | Volume 54 | Number 2 | August 2008 | Pages 569-575
Technical Paper | Materials Interactions | doi.org/10.13182/FST08-A1880
Articles are hosted by Taylor and Francis Online.
A set of laser implosion experiments were conducted at the OMEGA laser at the University of Rochester, Laboratory for Laser Energetics (LLE) to study the effect of 3He concentration in DT-filled target shells on fusion yield in ICF implosions. Eleven laser fusion shells consisting of 1100-m diameter, hollow, fused silica spheres with 4.6 to 4.7-m-thick walls were loaded with 520 kPa of deuterium-tritium (DT) and then with 3He (101.3 or 520 kPa). The 3He permeabilities of the shells were determined by measuring the pressure rate of rise into a system with known volume. A mathematical method was developed that relied on the experimental fill pressure and time, and the rate of rise data to solve differential equations using MathCAD to simultaneously calculate 3He permeability and initial 3He partial pressure inside the shell. Because of the high permeation rate for 3He out of the shells compared to that for DT gas, shells had to be recharged with 3He immediately before being laser imploded or "shot" at LLE. The 3He partial pressure in each individual shell at shot time was calculated from the measured 3He permeability. Two different partial pressures of 3He inside the shell were shown to reduce neutron and gamma yields during implosion.