ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
Sam Altman steps down as Oklo board chair
Advanced nuclear company Oklo Inc. has new leadership for its board of directors as billionaire Sam Altman is stepping down from the position he has held since 2015. The move is meant to open new partnership opportunities with OpenAI, where Altman is CEO, and other artificial intelligence companies.
Joseph R. Wermer et al.
Fusion Science and Technology | Volume 54 | Number 2 | August 2008 | Pages 569-575
Technical Paper | Materials Interactions | doi.org/10.13182/FST08-A1880
Articles are hosted by Taylor and Francis Online.
A set of laser implosion experiments were conducted at the OMEGA laser at the University of Rochester, Laboratory for Laser Energetics (LLE) to study the effect of 3He concentration in DT-filled target shells on fusion yield in ICF implosions. Eleven laser fusion shells consisting of 1100-m diameter, hollow, fused silica spheres with 4.6 to 4.7-m-thick walls were loaded with 520 kPa of deuterium-tritium (DT) and then with 3He (101.3 or 520 kPa). The 3He permeabilities of the shells were determined by measuring the pressure rate of rise into a system with known volume. A mathematical method was developed that relied on the experimental fill pressure and time, and the rate of rise data to solve differential equations using MathCAD to simultaneously calculate 3He permeability and initial 3He partial pressure inside the shell. Because of the high permeation rate for 3He out of the shells compared to that for DT gas, shells had to be recharged with 3He immediately before being laser imploded or "shot" at LLE. The 3He partial pressure in each individual shell at shot time was calculated from the measured 3He permeability. Two different partial pressures of 3He inside the shell were shown to reduce neutron and gamma yields during implosion.