ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
INL’s Teton supercomputer open for business
Idaho National Laboratory has brought its newest high‑performance supercomputer, named Teton, online and made it available to users through the Department of Energy’s Nuclear Science User Facilities program. The system, now the flagship machine in the lab’s Collaborative Computing Center, quadruples INL’s total computing capacity and enters service as the 85th fastest supercomputer in the world.
Joseph R. Wermer et al.
Fusion Science and Technology | Volume 54 | Number 2 | August 2008 | Pages 569-575
Technical Paper | Materials Interactions | doi.org/10.13182/FST08-A1880
Articles are hosted by Taylor and Francis Online.
A set of laser implosion experiments were conducted at the OMEGA laser at the University of Rochester, Laboratory for Laser Energetics (LLE) to study the effect of 3He concentration in DT-filled target shells on fusion yield in ICF implosions. Eleven laser fusion shells consisting of 1100-m diameter, hollow, fused silica spheres with 4.6 to 4.7-m-thick walls were loaded with 520 kPa of deuterium-tritium (DT) and then with 3He (101.3 or 520 kPa). The 3He permeabilities of the shells were determined by measuring the pressure rate of rise into a system with known volume. A mathematical method was developed that relied on the experimental fill pressure and time, and the rate of rise data to solve differential equations using MathCAD to simultaneously calculate 3He permeability and initial 3He partial pressure inside the shell. Because of the high permeation rate for 3He out of the shells compared to that for DT gas, shells had to be recharged with 3He immediately before being laser imploded or "shot" at LLE. The 3He partial pressure in each individual shell at shot time was calculated from the measured 3He permeability. Two different partial pressures of 3He inside the shell were shown to reduce neutron and gamma yields during implosion.