ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
INL’s Teton supercomputer open for business
Idaho National Laboratory has brought its newest high‑performance supercomputer, named Teton, online and made it available to users through the Department of Energy’s Nuclear Science User Facilities program. The system, now the flagship machine in the lab’s Collaborative Computing Center, quadruples INL’s total computing capacity and enters service as the 85th fastest supercomputer in the world.
K. Hashizume et al.
Fusion Science and Technology | Volume 54 | Number 2 | August 2008 | Pages 553-556
Technical Paper | Materials Interactions | doi.org/10.13182/FST08-A1876
Articles are hosted by Taylor and Francis Online.
Characteristics of the tritium diffusion coefficient DT in V-4Cr-4Ti alloy, including a bending in the Arrhenius plot of DT, are examined. Based on a trap model, the possible trap sources and their binding energies for tritium in the alloy are evaluated using the experimental data of DT in pure V, which are measured with a tritium tracer method, and the literature data of protium diffusion in V-Ti and V-Cr alloys. The result of the evaluation suggests the presence of two trap sources in the alloy. The first would be attributed to a trap at each substitutional alloying atom which is likely to be Ti. The binding energy EB of 0.08 eV gives the best fit to the observed value of DT above 300 K. The bending in the Arrhenius plot below 300 K is caused by a second trap site with a higher EB, and a lower concentration than those of each alloying atom. The trap is probably formed by the alloying atoms presence to neighboring Ti atoms. The contribution of Cr atom to the trap effect seems to be rather small in this alloy.