ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
K. Isobe, T. Hayashi, H. Nakamura, K. Kobayashi, T. Yamanishi, K. Okuno
Fusion Science and Technology | Volume 54 | Number 2 | August 2008 | Pages 533-536
Technical Paper | Materials Interactions | doi.org/10.13182/FST08-A1871
Articles are hosted by Taylor and Francis Online.
To clarify the tritium permeation behavior, tritium distribution in iron oxidized in high temperature water was observed with tritium micro autoradiography. It was found that tritium was distributed homogeneously in the iron metal. However the oxide surface (magnetite) was found to contain a very low concentration of tritium. The inner layer of oxide could strongly effect the tritium permeation. From a comparison with the permeation experiment that had been reported in Ref. 1, it was suggested that tritium would mainly diffuse other path except the oxide lattice. According to the chemical form of tritium, which was released from iron surface into water, two assumptions were suggested. One is based on the different combination of tritium on the water-surface interface. The other is based on the oxidation mechanism.