ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
INL’s Teton supercomputer open for business
Idaho National Laboratory has brought its newest high‑performance supercomputer, named Teton, online and made it available to users through the Department of Energy’s Nuclear Science User Facilities program. The system, now the flagship machine in the lab’s Collaborative Computing Center, quadruples INL’s total computing capacity and enters service as the 85th fastest supercomputer in the world.
K. Isobe, T. Hayashi, H. Nakamura, K. Kobayashi, T. Yamanishi, K. Okuno
Fusion Science and Technology | Volume 54 | Number 2 | August 2008 | Pages 533-536
Technical Paper | Materials Interactions | doi.org/10.13182/FST08-A1871
Articles are hosted by Taylor and Francis Online.
To clarify the tritium permeation behavior, tritium distribution in iron oxidized in high temperature water was observed with tritium micro autoradiography. It was found that tritium was distributed homogeneously in the iron metal. However the oxide surface (magnetite) was found to contain a very low concentration of tritium. The inner layer of oxide could strongly effect the tritium permeation. From a comparison with the permeation experiment that had been reported in Ref. 1, it was suggested that tritium would mainly diffuse other path except the oxide lattice. According to the chemical form of tritium, which was released from iron surface into water, two assumptions were suggested. One is based on the different combination of tritium on the water-surface interface. The other is based on the oxidation mechanism.