ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Fusion energy: Progress, partnerships, and the path to deployment
Over the past decade, fusion energy has moved decisively from scientific aspiration toward a credible pathway to a new energy technology. Thanks to long-term federal support, we have significantly advanced our fundamental understanding of plasma physics—the behavior of the superheated gases at the heart of fusion devices. This knowledge will enable the creation and control of fusion fuel under conditions required for future power plants. Our progress is exemplified by breakthroughs at the National Ignition Facility and the Joint European Torus.
J. Chêne, P. Trabuc, O. Gastaldi
Fusion Science and Technology | Volume 54 | Number 2 | August 2008 | Pages 510-514
Technical Paper | Materials Interactions | doi.org/10.13182/FST08-A1865
Articles are hosted by Taylor and Francis Online.
The behavior of hydrogen and its isotopes in materials is a major concern in future nuclear systems both for the predictive analysis of the role of H, D, T in the environmental degradation of structural materials, for the confinement and inventory of tritium, and for the management of tritiated wastes.This study is focused on the characterization of the effect of the alloy microstructure, of desorption anneal and of oxide films on the tritium behavior (desorption kinetics, trapping, residual concentration) in various austenitic stainless steels.Different techniques (high temperature extraction of hydrogen, beta counting of tritium in massive samples) were used to study : the tritium absorption and desorption in several stainless steels, the role of the annealing conditions (temperature/time) on the tritium residual concentration and desorption flow, and the role of microstructural defects and of oxide films on the diffusion and trapping of tritium.