ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Yasuyuki Itoh, Yoshiki Murakami, Satoshi Nishio
Fusion Science and Technology | Volume 40 | Number 2 | September 2001 | Pages 125-132
Technical Paper | doi.org/10.13182/FST01-A186
Articles are hosted by Taylor and Francis Online.
A feasibility study is presented of fast tokamak plasma terminations by means of high-Z impurity liquid jet injections in order to reduce the technological requirements of such terminations. The calculation was carried out by combining models described for the jet ablation and the current termination and taking into account the ionization of the jet material exposed to generated runaway electrons. The liquid jet was assumed to fragment and thus to deposit more massive impurity ions in the plasma. Although argon or krypton jet injection generates the runaway electron current, it decays in several hundred milliseconds with ionization of the residual jet material. These high-Z impurity jet injections would also be applicable for terminating or reducing the runaway electron current tails generated by major plasma disruptions.