ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2021 ANS Virtual Annual Meeting
June 14–16, 2021
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2021
Jan 2021
Latest Journal Issues
Nuclear Science and Engineering
May 2021
Nuclear Technology
April 2021
Fusion Science and Technology
February 2021
Latest News
Consultant recommends subsidies for Exelon plants
A research and consulting firm hired by Illinois governor J. B. Pritzker’s administration to scrutinize the financial fitness of Exelon’s Byron and Dresden nuclear plants approves of limited state subsidies for the facilities, according to a redacted version of the firm’s report made available yesterday.
M. B. Rozenkevich, I. L. Rastunova, S. V. Prokunin
Fusion Science and Technology | Volume 54 | Number 2 | August 2008 | Pages 466-469
Technical Paper | Water Processing | dx.doi.org/10.13182/FST08-A1855
Articles are hosted by Taylor and Francis Online.
Detritiation of light water wastes down to a level permissible to discharge into the environment while simultaneously concentrating tritium to decrease amount of waste being buried is a constant problem. The laboratory setup for the light water detritiation process is presented. The separation column consists of 10 horizontally arranged perfluorosulphonic acid Nafiontype membrane contact devises and platinum catalyst (RCTU-3SM). Each contact device has 42.3 cm2 of the membrane and 10 cm3 of the catalyst. The column is washed by tritium free light water (LH2O) and the tritiumcontaining flow (FHTO) feeds the electrolyser at = GH2/LH2O = 2. A separation factor of 66 is noted with the device at 336 K and 0.145 MPa.