ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Yasunori Iwai, Masayuki Uzawa, Toshihiko Yamanishi
Fusion Science and Technology | Volume 54 | Number 2 | August 2008 | Pages 462-465
Technical Paper | Water Processing | doi.org/10.13182/FST54-462
Articles are hosted by Taylor and Francis Online.
Several types of adsorbers have been studied as they are considered for the first stage of water detritiation systems processing more than 100kg/h of high-level tritiated water generated in a future fusion plant. Zeolite is a suitable adsorbent since it is an inorganic material having a large water capacity. Rapid dehydration characteristics as well as a large HTO/H2O separation factor is necessary for the adsorber to minimize its size. Present experiments were focused on the effect of cations on HTO / H2O separation and dehydration characteristics of Y-type zeolites. The selected cations are Na, K and Ca. The flamework SiO2/Al2O3 ratio of the zeolites is fixed to 5.0 in the present experiments. It was found that the isotope separation factors are around 1.1-1.2 under static conditions. As for dehydration, operating temperature fixes the capacity of movable water from the zeolites. The capacity at room temperature is NaY > CaY > KY. HTO dehydration characteristics depend on the accumulated purge gas amount, while the purge gas rate is less influential. Effect of temperature on HTO dehydration is also less influential especially in the early stage of dehydration. Pressure swing is an effective method for HTO dehydration.