ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
Sam Altman steps down as Oklo board chair
Advanced nuclear company Oklo Inc. has new leadership for its board of directors as billionaire Sam Altman is stepping down from the position he has held since 2015. The move is meant to open new partnership opportunities with OpenAI, where Altman is CEO, and other artificial intelligence companies.
Zhongliang Shi, Jerzy A. Szpunar, Shanqiang Wu
Fusion Science and Technology | Volume 54 | Number 2 | August 2008 | Pages 430-433
Technical Paper | Isotope Separation | doi.org/10.13182/FST08-A1847
Articles are hosted by Taylor and Francis Online.
The progress of electroless deposition of palladium around the pore area at surface of porous stainless steel was recorded in order to understand membrane formation and to control the membrane quality. A bridge structure is formed during the membrane formation around the pore area of the substrate. The porous substrate was modified to be smooth using micro-or nano-size metal or metal oxide particles in order to make sure that palladium membrane is strongly supported by the substrate and as the result the membrane thickness can be further reduced. The experimental results obtained from hydrogen permeation through the palladium membranes having the thickness from 400 nm to 18 m demonstrate that these thin membranes are solid and they can be used at the temperature of 550°C and hydrogen pressure difference of 350 kPa. The proposed processing will allow optimizing the design and fabrication of thin palladium membranes for hydrogen separation.