ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Webinar: MC&A and safety in advanced reactors in focus
Towell
Russell
Prasad
The American Nuclear Society’s Nuclear Nonproliferation Policy Division recently hosted a webinar on updating material control and accounting (MC&A) and security regulations for the evolving field of advanced reactors.
Moderator Shikha Prasad (CEO, Srijan LLC) was joined by two presenters, John Russell and Lester Towell, who looked at how regulations that were historically developed for traditional light water reactors will apply to the next generation of nuclear technology and what changes need to be made.
Anisia Bornea, M. Zamfirache, I. Stefanescu, Anisoara Preda, O. Balteanu, Ioana Stefan
Fusion Science and Technology | Volume 54 | Number 2 | August 2008 | Pages 426-429
Technical Paper | Isotope Separation | doi.org/10.13182/FST08-A1846
Articles are hosted by Taylor and Francis Online.
Research conducted in the last fifty years has shown that one of the most efficient techniques of removing tritium from the heavy water used as moderator and coolant in CANDU reactors (as that operated at Cernavoda, Romania) is hydrogen cryogenic distillation.Designing and implementing the concept of cryogenic distillation columns require experiments to be conducted as well as computer simulations. Particularly, computer simulations are of great importance when designing and evaluating the performances of a column or a series of columns. Experimental data collected from laboratory work will be used as input for computer simulations run at larger scale (for The Pilot Plant for Tritium and Deuterium Separation) in order to increase the confidence in the simulated results.Studies carried out were focused on the following:- Quantitative analyses of important parameters such as the number of theoretical plates, inlet area, reflux flow, flow-rates extraction, working pressure, etc.- Columns connected in series in such a way to fulfil the separation requirements.Experiments were carried out on a laboratory-scale installation to investigate the performance of contact elements with continuous packing. The packing was manufactured in our institute.