ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
E. Fleury et al.
Fusion Science and Technology | Volume 54 | Number 2 | August 2008 | Pages 367-370
Technical Paper | Tritium and Inertial Fusion | doi.org/10.13182/FST08-A1832
Articles are hosted by Taylor and Francis Online.
As part of the French Inertial Confinement Fusion (ICF) experiments, cryogenic target assemblies (CTAs) for the Laser Mégajoule (LMJ) program are manufactured and filled at CEA Valduc (Dijon) in tritium facilities. They will be moved at about 20 K into a transport cryostat for cryogenic targets, and will be driven from CEA/Valduc to CEA/CESTA (Bordeaux).This paper deals with the description of the tritium facilities for the LMJ cryogenic target.Twelve gloveboxes are needed to furnish 6 CTAs at the same time. These twelve gloveboxes make a relative independent set in the Valduc tritium building and house equipment to prepare the CTAs and the different vacuum vessels, to store and purify gas, to fill and cool the targets and transport them at cryogenic temperature.