ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
UNC, GE agree to clean up former New Mexico uranium mine
The United Nuclear Corporation (UNC) and General Electric Company will undertake a nearly $63 million, decade-long cleanup project at the former Northeast Church Rock Mine in northwestern New Mexico under a consent decree with the United States, the Navajo Nation, and the state of New Mexico.
Zengyu Xu, Chuanjie Pan, Wenhao Wei
Fusion Science and Technology | Volume 40 | Number 1 | July 2001 | Pages 79-85
Technical Paper | doi.org/10.13182/FST01-A182
Articles are hosted by Taylor and Francis Online.
It is important that the magnetohydrodynamic (MHD) flow velocity in the cross section of the junction region of a manifold pipe be related to materials compatibility, heat transfer, and MHD pressure drop. Experimental results are given of the velocity distribution across the circular pipe on the center plane in the region of the junction of a manifold pipe and the MHD pressure drop due to the junction MHD effects. The results show that both the boundary layer and core velocity distribution on the center plane of the cross section of the junction region of the manifold pipe increase with an increase of the Hartmann number M and that the velocity at the boundary is jet flow and in the core is flat flow. However, the approach theory expects the core velocity distribution to decrease with an increase of M and never in jet flow at the boundary layer. For the downstream case, the velocity distribution is strongly affected by the junction of the manifold pipe only in a half area of the cross section and for the upstream case in the whole cross-section area. The factor for MHD pressure drops due to the junction MHD effects is also carried out, which explains the experimental data.