ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Takeshi Muranaka, Nagayoshi Shima
Fusion Science and Technology | Volume 54 | Number 1 | July 2008 | Pages 297-300
Technical Paper | Environment and Safety | doi.org/10.13182/FST08-A1817
Articles are hosted by Taylor and Francis Online.
An electrolytic cell, essentially composed of a solid polymer electrolyte (SPE) film and porous dimensionally stable electrodes (DSEs), was designed to reduce the electrolytic voltage in an electrolyzer. The device achieved a tritium recovery factor of 0.836±0.021 for a volume reduction factor of five when operated at a current of 6 A, while maintaining a water bath temperature below 2 °C. Sample and standard waters were simultaneously enriched by connecting two electrolytic cells in series. The sample water was first enriched using a commercially available apparatus with a large electrolytic current of 50 A until the volume in the sample water was reduced to approximately one fifth of the original volume. This "two-stage electrolysis" enrichment was applied to coastal seawaters from the Aomori prefecture. Tritium concentrations, ranging from 0.2 to 0.5 Bq/L, were found, with a measurement error (i.e. a statistical error of one sigma) of ca. 10% of the obtained values.