ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Industry Update—October 2025
Here is a recap of recent industry happenings:
New international partnership to speed Xe-100 SMR deployment
X-energy, Amazon, Korea Hydro & Nuclear Power, and Doosan Enerbility have formed a strategic partnership to accelerate the deployment of X-energy’s Xe-100 small modular reactors and TRISO fuel in the United States to meet the power demands from data centers and AI. The partners will collaborate in reactor engineering design, supply-chain development, construction planning, investment strategies, long-term operations, and global opportunities for joint AI-nuclear deployment. The companies also plan to jointly mobilize as much as $50 billion in public and private investment to support advanced nuclear energy in the U.S.
Tatsuhiko Uda, Masahiro Tanaka, Takahiko Sugiyama, Taku Yamaguchi, Noriyuki Momoshima
Fusion Science and Technology | Volume 54 | Number 1 | July 2008 | Pages 281-284
Technical Paper | Environment and Safety | doi.org/10.13182/FST08-A1813
Articles are hosted by Taylor and Francis Online.
Atmospheric tritium concentrations at the National Institute for Fusion Science (NIFS) Toki site of Japan, where the Large Helical Device (LHD) has been operating, were measured considering future deuterium plasma experiments and environmental safety. The major chemical forms of atmospheric tritium are water (HTO), hydrogen (HT) and methane (CH3T). Average tritium concentrations of HTO, HT and CH3T observed from January 2003 to March 2006 were 9.0 mBq/m3, 9.0 mBq/m3 and 2.0 mBq/m3, respectively. To examine about the systematic error of the air sampling device, we cross-checked with the sampling device of Kumamoto University. The values obtained with both devices were almost consistent. The HTO concentration principally depends on humidity in air. The HTO concentration in the collected water and the HT concentration tend to show seasonal variation. The atmospheric tritium levels measured at Toki were consistent comparing with another environmental values measured in Japan. The present atmospheric tritium monitoring would be useful for safety consideration.