ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Chris Wagner: The role of Eden Radioisotopes in the future of nuclear medicine
Chris Wagner has more than 40 years of experience in nuclear medicine, beginning as a clinical practitioner before moving into leadership roles at companies like Mallinckrodt (now Curium) and Nordion. His knowledge of both the clinical and the manufacturing sides of nuclear medicine laid the groundwork for helping to found Eden Radioisotopes, a start-up venture that intends to make diagnostic and therapeutic raw material medical isotopes like molybdenum-99 and lutetium-177.
S. Ring Peterson, Wolfgang Raskob
Fusion Science and Technology | Volume 54 | Number 1 | July 2008 | Pages 277-280
Technical Paper | Environment and Safety | doi.org/10.13182/FST08-A1812
Articles are hosted by Taylor and Francis Online.
Throughout fifty-three years of operations, an estimated 29,300 TBq of tritium have been released to the atmosphere at the Livermore site of Lawrence Livermore National Laboratory; about 75% of this was released accidentally as gaseous tritium in 1965 and 1970. Routine emissions contributed slightly more than 3,700 TBq gaseous tritium and about 2,800 TBq tritiated water vapor to the total. Mean annual doses (with 95% confidence intervals) to the most exposed member of the public were calculated for all years using the same model and the same assumptions. Because time-dependent tritium models require detailed meteorological data that were unavailable for the large releases, ingestion/inhalation dose ratios were derived from experience with UFOTRI. Even with assumptions to assure that doses would not be underestimated, all doses from routine and accidental releases were below the level (3.6 mSv) at which adverse health effects have been documented, and most were below the current regulatory limit of 100 Sv per year from releases to the atmosphere.