ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
INL’s Teton supercomputer open for business
Idaho National Laboratory has brought its newest high‑performance supercomputer, named Teton, online and made it available to users through the Department of Energy’s Nuclear Science User Facilities program. The system, now the flagship machine in the lab’s Collaborative Computing Center, quadruples INL’s total computing capacity and enters service as the 85th fastest supercomputer in the world.
G. L. Kulcinski et al.
Fusion Science and Technology | Volume 64 | Number 2 | August 2013 | Pages 373-378
Alternate Concepts/Applications | Proceedings of the Twentieth Topical Meeting on the Technology of Fusion Energy (TOFE-2012) (Part 1), Nashville, Tennessee, August 27-31, 2012 | doi.org/10.13182/FST12-576
Articles are hosted by Taylor and Francis Online.
The University of Wisconsin-Madison has conducted research on gridded inertial electrostatic confinement (IEC) devices for the past 18 years. There are currently 4 experimental devices operating at voltages up to 180 kV and 60 mA. These devices have uncovered several new phenomena that have greatly improved our understanding of IEC devices. Recent advances include the discovery of a significant negative ion component of DD plasmas and spatial profiles of fusion reactions that did not conform to our prior understanding of these devices. The use of this technology has also contributed to our understanding of surface damage to high temperature in-vessel W components after even low exposures to energetic He ion fluences. Expansion of the voltage-ion current parameter space to 300 kV-200 mA in the near future will help our understanding of advanced fusion fuel cycles.