ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Air Force issues notice to partner with Oklo on microreactor deployment in Alaska
The U.S. Department of Air Force has announced its notice of intent to award advanced nuclear technology company Oklo a contract to pilot a microreactor at Eielson Air Force Base in Alaska.
G. L. Kulcinski et al.
Fusion Science and Technology | Volume 64 | Number 2 | August 2013 | Pages 373-378
Alternate Concepts/Applications | Proceedings of the Twentieth Topical Meeting on the Technology of Fusion Energy (TOFE-2012) (Part 1), Nashville, Tennessee, August 27-31, 2012 | doi.org/10.13182/FST12-576
Articles are hosted by Taylor and Francis Online.
The University of Wisconsin-Madison has conducted research on gridded inertial electrostatic confinement (IEC) devices for the past 18 years. There are currently 4 experimental devices operating at voltages up to 180 kV and 60 mA. These devices have uncovered several new phenomena that have greatly improved our understanding of IEC devices. Recent advances include the discovery of a significant negative ion component of DD plasmas and spatial profiles of fusion reactions that did not conform to our prior understanding of these devices. The use of this technology has also contributed to our understanding of surface damage to high temperature in-vessel W components after even low exposures to energetic He ion fluences. Expansion of the voltage-ion current parameter space to 300 kV-200 mA in the near future will help our understanding of advanced fusion fuel cycles.