ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2021 Student Conference
April 8–10, 2021
Virtual Meeting
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2021
Jul 2020
Latest Journal Issues
Nuclear Science and Engineering
March 2021
Nuclear Technology
February 2021
Fusion Science and Technology
January 2021
Latest News
Fukiushima Daiichi: 10 years on
The Fukushima Daiichi site before the accident. All images are provided courtesy of TEPCO unless noted otherwise.
It was a rather normal day back on March 11, 2011, at the Fukushima Daiichi nuclear plant before 2:45 p.m. That was the time when the Great Tohoku Earthquake struck, followed by a massive tsunami that caused three reactor meltdowns and forever changed the nuclear power industry in Japan and worldwide. Now, 10 years later, much has been learned and done to improve nuclear safety, and despite many challenges, significant progress is being made to decontaminate and defuel the extensively damaged Fukushima Daiichi reactor site. This is a summary of what happened, progress to date, current situation, and the outlook for the future there.
K. Miyamoto, K. Yamamoto, Y. Inoue
Fusion Science and Technology | Volume 54 | Number 1 | July 2008 | Pages 261-264
Technical Paper | Environment and Safety | dx.doi.org/10.13182/FST08-A1808
Articles are hosted by Taylor and Francis Online.
The atmospheric dispersion model (Tritium-EESAD) was further modified so as to be able to predict tritium concentration in plant tissue free water (TFWT), organically-bound tritium (OBT) and groundwater. The modified model was validated by participating in the Pine Tree Scenario of the IAEA EMRAS program. Monitoring data were disclosed after submission of model predictions and compared with them. Overall time trends of the predicted tritium concentrations in almost all calculation endpoints agreed well with those of observations within a factor of two.