ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Air Force issues notice to partner with Oklo on microreactor deployment in Alaska
The U.S. Department of Air Force has announced its notice of intent to award advanced nuclear technology company Oklo a contract to pilot a microreactor at Eielson Air Force Base in Alaska.
L. M. Garrison, G. L. Kulcinski
Fusion Science and Technology | Volume 64 | Number 2 | August 2013 | Pages 216-220
Materials Development | Proceedings of the Twentieth Topical Meeting on the Technology of Fusion Energy (TOFE-2012) (Part 1), Nashville, Tennessee, August 27-31, 2012 | doi.org/10.13182/FST13-A18079
Articles are hosted by Taylor and Francis Online.
Single crystal tungsten samples with orientation (110) were irradiated in the Materials Irradiation Experiment with normal incidence 30 keV He+ at 900 aC. Samples were mechanically polished and then electropolished with a KOH solution before irradiation to 3×1017 to 6×1018 He+/cm2. With increasing fluence sample surface pore size increased from ~20 nm to more than 100 nm. Mass loss also increased with fluence to a maximum of 15 g/m2 lost for the highest fluence sample.