ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
T. Muroga, D. Zhang, T. Tanaka
Fusion Science and Technology | Volume 64 | Number 2 | August 2013 | Pages 211-215
Materials Development | Proceedings of the Twentieth Topical Meeting on the Technology of Fusion Energy (TOFE-2012) (Part 1), Nashville, Tennessee, August 27-31, 2012 | doi.org/10.13182/FST13-A18078
Articles are hosted by Taylor and Francis Online.
Previous studies by the authors showed that hydrogen permeation reduction factor (PRF) of Er2O3 coating on ferritic steels by Metal Organic Decomposition (MOD) depends on the Cr level of the substrate steels and the annealing conditions. The reason of the dependence was attributed to the composition of the oxide layer formed beneath the coating. The PRF was shown to be larger when Cr2O3 layer was formed than when Fe2O3 layer was formed. This paper reports further investigation of the effect of temperature and oxygen partial pressure of the annealing on the composition of the oxide layer. A diffusion modeling of Cr and O was performed to account for the experimental data. The results showed that the data can be well explained assuming that Cr2O3 layer is formed when supply of Cr exceeds that of O at the substrate surface.