ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Air Force issues notice to partner with Oklo on microreactor deployment in Alaska
The U.S. Department of Air Force has announced its notice of intent to award advanced nuclear technology company Oklo a contract to pilot a microreactor at Eielson Air Force Base in Alaska.
T. Muroga, D. Zhang, T. Tanaka
Fusion Science and Technology | Volume 64 | Number 2 | August 2013 | Pages 211-215
Materials Development | Proceedings of the Twentieth Topical Meeting on the Technology of Fusion Energy (TOFE-2012) (Part 1), Nashville, Tennessee, August 27-31, 2012 | doi.org/10.13182/FST13-A18078
Articles are hosted by Taylor and Francis Online.
Previous studies by the authors showed that hydrogen permeation reduction factor (PRF) of Er2O3 coating on ferritic steels by Metal Organic Decomposition (MOD) depends on the Cr level of the substrate steels and the annealing conditions. The reason of the dependence was attributed to the composition of the oxide layer formed beneath the coating. The PRF was shown to be larger when Cr2O3 layer was formed than when Fe2O3 layer was formed. This paper reports further investigation of the effect of temperature and oxygen partial pressure of the annealing on the composition of the oxide layer. A diffusion modeling of Cr and O was performed to account for the experimental data. The results showed that the data can be well explained assuming that Cr2O3 layer is formed when supply of Cr exceeds that of O at the substrate surface.