ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
DNFSB’s Summers ends board tenure, extending agency’s loss of quorum
Lee
Summers
The Defense Nuclear Facilities Safety Board, the independent agency responsible for ensuring that Department of Energy facilities are protective of public health and safety, announced that the board’s acting chairman, Thomas Summers, has concluded his service with the agency, having completed his second term as a board member on October 18.
Summers’ departure leaves Patricia Lee, who joined the DNFSB after being confirmed by the Senate in July 2024, as the board’s only remaining member and acting chair. Lee’s DNFSB board term ends in October 2027.
J. L. Weaver et al.
Fusion Science and Technology | Volume 64 | Number 2 | August 2013 | Pages 194-200
IFE | Proceedings of the Twentieth Topical Meeting on the Technology of Fusion Energy (TOFE-2012) (Part 1), Nashville, Tennessee, August 27-31, 2012 | doi.org/10.13182/FST13-A18076
Articles are hosted by Taylor and Francis Online.
Recent designs for laser driven, direct drive inertial confinement fusion (ICF) indicate that substantial gains (G>100) might be achieved with lower total laser energy (E~500 kJ) than previously considered possible. A leading contender is the shock ignition approach which compresses low aspect ratio pellets with high intensity laser pulses (1015 W/cm2) before achieving ignition with a final higher intensity spike (1016 W/cm2). Excimer laser systems based on a krypton-fluoride (KrF) medium are particularly well suited to these new ideas as they operate in the ultraviolet (248 nm), provide highly uniform illumination, possess large bandwidth (1-3 THz), and can easily exploit beam zooming to improve laser-target coupling for the final spike pulse. This paper will examine target physics advantages of KrF lasers in relation to the new implosion designs and the balancing of hydrodynamic instability and laser-plasma instabilities. Supporting experimental and theoretical studies of are being conducted by the Nike laser group at the U. S. Naval Research Laboratory. Recent experimental work has also shown that the high ablation pressures and smooth profiles obtained with the Nike laser can be used to accelerate planar targets to velocities consistent with the requirements of impact ignition.