ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Air Force issues notice to partner with Oklo on microreactor deployment in Alaska
The U.S. Department of Air Force has announced its notice of intent to award advanced nuclear technology company Oklo a contract to pilot a microreactor at Eielson Air Force Base in Alaska.
S. Reyes et al.
Fusion Science and Technology | Volume 64 | Number 2 | August 2013 | Pages 187-193
IFE | Proceedings of the Twentieth Topical Meeting on the Technology of Fusion Energy (TOFE-2012) (Part 1), Nashville, Tennessee, August 27-31, 2012 | doi.org/10.13182/FST12-529
Articles are hosted by Taylor and Francis Online.
The Laser Inertial Fusion Energy (LIFE) power plant is being designed to deliver a transformative source of safe, secure, sustainable electricity, in a time scale that is consistent with the global energy market needs. The LIFE market entry plant will demonstrate the feasibility of a closed fusion fuel cycle, including tritium breeding, extraction, processing, re-fueling, accountability and safety, in a steady-state power-producing device. While many fusion plant designs require large quantities of tritium for startup and operations, a range of design choices made for the LIFE fuel cycle act to reduce the inprocess tritium inventory. The high fractional burn-up (~30%) in an Inertial Fusion Energy (IFE) capsule relaxes the tritium breeding requirements, while the use of only milligram quantities of fuel per shot and choice of a pure lithium heat transfer fluid substantially reduce the amount of material entrained in the facility. Additionally, the high solubility of tritium in the lithium breeder is expected to mitigate the need for development of permeation barriers in the engine systems, normally required to control routine releases within the allowable regulatory limits.The present paper offers an overview of the design of the LIFE fuel cycle, including a summary of the technology development plan consistent with the delivery schedule of the LIFE market entry plant.