ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
Matthew F. Wolford, John D. Sethian, Matthew C. Myers, Frank Hegeler, John L. Giuliani, Stephen P. Obenschain
Fusion Science and Technology | Volume 64 | Number 2 | August 2013 | Pages 179-186
IFE | Proceedings of the Twentieth Topical Meeting on the Technology of Fusion Energy (TOFE-2012) (Part 1), Nashville, Tennessee, August 27-31, 2012 | doi.org/10.13182/FST12-502
Articles are hosted by Taylor and Francis Online.
The United States Naval Research Laboratory (NRL) is developing the krypton fluoride (KrF) laser technology for a direct drive laser inertial fusion energy (IFE) power plant. The overall projected wall plug efficiency for KrF laser system is ~7%, including thermal management and optical losses. There are two KrF lasers at NRL. The first, Nike, provides up to 3 kJ of laser light per shot for experimental research in KrF laser-target interactions. The Electra Laser at NRL is a repetitively pulsed electron beam pumped 700 Joule KrF laser facility. The objective with Electra is to develop technologies to meet the IFE requirements for repetition rate, efficiency, and durability. Electra produces over 750 Joules in oscillator mode. Based on experiments, there is expected to be virtually no degradation in the laser focal profile, even at 5 Hz, high efficiency operation. Progress in durability has lead to achievement of KrF laser runs for 10 continuous hours at 2.5 Hz (90,000 shots) and 100 minutes at 5 Hz (over 30,000 shots). The main impediment to achieving long duration runs is the present pulsed power system that is based on spark gap switches. NRL has developed a new all solid state system that has operated for 11 million pulses continuously at 10 Hz and is based on components attaining 300 million pulses. These studies show an electron beam pumped KrF laser should be a viable approach for a laser fusion energy driver.