ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
From the Pages of Nuclear News: Industry update July 2025
Here is a recap of industry happenings from the recent past:
Utah moves to forefront of advanced nuclear development
EnergySolutions has signed a memorandum of understanding to partner with Utah’s Intermountain Power Agency and the Utah state government to explore the development of advanced nuclear power generation at the Intermountain Power Project (IPP) site near Delta. The MOU calls for the leveraging of existing infrastructure at the IPP site; potential development of small modular reactor nuclear baseload power; potential synergy with the existing Intermountain Power Agency energy hub and advanced grid stabilization technologies; collaboration with local, state, and regional stakeholders; and commitment to rural economic development and job creation in the state. The partnership is aligned with Utah Gov. Spencer Cox’s Operation Gigawatt, an initiative to double Utah’s energy production over the next 10 years.
G. D. Loesser, C. S. Pitcher, R. Feder, D. Johnson, S. Pak, M. Walsh, Y. Zhai
Fusion Science and Technology | Volume 64 | Number 2 | August 2013 | Pages 156-160
ITER | Proceedings of the Twentieth Topical Meeting on the Technology of Fusion Energy (TOFE-2012) (Part 1), Nashville, Tennessee, August 27-31, 2012 | doi.org/10.13182/FST12-558
Articles are hosted by Taylor and Francis Online.
The ITER Diagnostic Division is responsible for designing and procuring the First Wall Blankets that are mounted on the vacuum vessel port plugs at both the upper and equatorial levels. This paper will discuss the effects of the diagnostic aperture shape and configuration on the coolant circuit design. The Diagnostic First Wall (DFW) design is driven in large part by the need to conform the coolant arrangement to a wide variety of diagnostic apertures combined with the more severe heating conditions at the surface facing the plasma, the First Wall (FW). At the FW, a radiant heat flux of 35W/cm2 combines with approximate peak volumetric heating rates of 8W/cm3 (equatorial ports) and 5W/cm3 (upper ports). Here at the FW, a fast thermal response is desirable and leads to a thin element between the heat flux and coolant. This requirement conflicts with the desire to have a thicker FW element to accommodate surface erosion and other off-normal plasma events.