ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
The top 10 states of nuclear
The past few years have seen a concerted effort from many U.S. states to encourage nuclear development. The momentum behind nuclear-friendly policies has grown considerably, with many states repealing moratoriums, courting nuclear developers and suppliers, and in some cases creating advisory groups and road maps to push deployment of new nuclear reactors.
S. B. Kim, W. J. G. Workman, P. A. Davis, T. Yankovich
Fusion Science and Technology | Volume 54 | Number 1 | July 2008 | Pages 248-252
Technical Paper | Environment and Safety | doi.org/10.13182/FST08-A1805
Articles are hosted by Taylor and Francis Online.
Tritiated water (HTO) and organically bound tritium (OBT) concentrations in the non-human biota inhabiting Duke Swamp were measured during the 2005 growing season. Samples of surface water, soil, plants, precipitation, wild animals and air moisture were collected from 2005 May to October at five locations in the swamp and analyzed for their tritium content. HTO concentrations in air moisture decreased with height since the tritium source is in the ground. Soil HTO concentrations were not closely related to the concentrations in nearby surface water and the HTO concentration in balsam fir needles showed no clear pattern with height. HTO concentrations in moss, grass and alder leaves decreased in September, which is the time when metabolic activity is reduced. OBT concentrations in a given compartment showed less variation than the HTO concentrations in that compartment. The OBT/HTO ratio was approximately one for soil and less than one for plants, with the exception of lichen. The OBT/HTO ratio in most wild animals was also less than one, but increased to more than 2.0 for mice. Although the tritium concentrations varied substantially in space and time in Duke Swamp, the fact that OBT/HTO <1 for most compartments suggests that equilibrium conditions hold locally.