ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2021 Student Conference
April 8–10, 2021
Virtual Meeting
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2021
Jul 2020
Latest Journal Issues
Nuclear Science and Engineering
March 2021
Nuclear Technology
February 2021
Fusion Science and Technology
January 2021
Latest News
NC State celebrates 70 years of nuclear engineering education
An early picture of the research reactor building on the North Carolina State University campus. The Department of Nuclear Engineering is celebrating the 70th anniversary of its nuclear engineering curriculum in 2020–2021. Photo: North Carolina State University
The Department of Nuclear Engineering at North Carolina State University has spent the 2020–2021 academic year celebrating the 70th anniversary of its becoming the first U.S. university to establish a nuclear engineering curriculum. It started in 1950, when Clifford Beck, then of Oak Ridge, Tenn., obtained support from NC State’s dean of engineering, Harold Lampe, to build the nation’s first university nuclear reactor and, in conjunction, establish an educational curriculum dedicated to nuclear engineering.
The department, host to the 2021 ANS Virtual Student Conference, scheduled for April 8–10, now features 23 tenure/tenure-track faculty and three research faculty members. “What a journey for the first nuclear engineering curriculum in the nation,” said Kostadin Ivanov, professor and department head.
N. Baglan, R. Le Meignen, G. Alanic, F. Pointurier
Fusion Science and Technology | Volume 54 | Number 1 | July 2008 | Pages 243-247
Technical Paper | Environment and Safety | dx.doi.org/10.13182/FST08-A1804
Articles are hosted by Taylor and Francis Online.
Tritium exists in environmental samples in three forms: (i) Tissue Free Water Tritium (TFWT) and associated with the organic matter (OBT) under two forms; (ii) bound to oxygen and nitrogen atoms into the material (EOBT); (iii) bound to carbon atoms into the material (NEOBT). The developed analytical procedure allows obtaining accurate and reproducible information for the various tritium fraction determinations.Aiming to follow the distribution and the integration of NE-OBT in the vicinity of a nuclear research centre down to environmental level the analytical procedure was optimized to reduce possible contamination during critical stages such as the E-OBT elimination. Therefore, a new process using steam was designed and investigated leading to promising results.A broad study was initiated to study potential impact of tritium on tree leaves sampled in the vicinity of a nuclear research centre within a radius of about 20 km. Moreover both plane tree and oak leaves have been sampled to establish the NE-OBT mapping. Therefore, for several locations they were sampled twofold for comparison. Appropriate statistical tests allow assessing that the type of tree does not influence the NE-OBT integration in our experimental conditions.