ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
UNC, GE agree to clean up former New Mexico uranium mine
The United Nuclear Corporation (UNC) and General Electric Company will undertake a nearly $63 million, decade-long cleanup project at the former Northeast Church Rock Mine in northwestern New Mexico under a consent decree with the United States, the Navajo Nation, and the state of New Mexico.
Lisa A. Haynes, J. P. Kelly, David N. Ruzic, Dennis Mueller, J. Kamperschroer
Fusion Science and Technology | Volume 33 | Number 1 | January 1998 | Pages 74-83
Technical Paper | doi.org/10.13182/FST98-A18
Articles are hosted by Taylor and Francis Online.
The DEGAS neutral transport code is used in two separate cases to simulate the neutral beam box and vessel of the Tokamak Fusion Test Reactor (TFTR). For the neutral beam box simulation, known input parameters include the ion density at the source exit and the proportion of input gas that is converted to the high-energy atomic beam. The T0 current to the torus is (1.61 ± 0.03) × 1020 s-1, with the high-energy beam having a median energy above 95 keV. Corresponding results are found for the D0 current. In addition, the amount of gas reaching the torus, the pressure, and the flux and energy distributions of the ions and neutrals to the walls are found. For the tritium case, it is calculated that 92.4 ± 0.2% of the input tritium reaches the cryopanels, 6.64 ± 0.05% reaches the torus, and 1.0 ± 0.2% reaches the ion dump. In the second run, DEGAS was used to calculate the neutral atom flux and energy of particles incident on the walls of the vacuum vessel and the neutral pressure in the pump duct of TFTR during a typical supershot with a 50/50 mixture of deuterium-tritium. Output quantities are the current and energy to the bumper limiter and first wall. The total amount of tritium implanted in the vacuum vessel after 150 shots of 1-s duration is estimated to be 0.5 ± 0.1 g in the bumper limiter and 0.042 ± 0.023 g in the outer wall and pumping duct, which is well within the 5-g on-site inventory and the 2-g in-vessel inventory. The implications of these results are discussed.