ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
R. W. Margevicius
Fusion Science and Technology | Volume 41 | Number 3 | May 2002 | Pages 286-295
Technical Paper | Fourteenth Target Fabrication Specialists' Meeting | doi.org/10.13182/FST02-A17914
Articles are hosted by Taylor and Francis Online.
Beryllium is being considered as a possible capsule material for ignition targets for the National Ignition Facility. The material and machining specifications may ned to be highly restrictive, especially with regard to isotropic sound propagation. Beryllium, a hexagonal metal, displays directionally dependent sound speeds due to its anisotropic Young’s modulus. Crystallographic texture transfers this anisotropic sound speed to the polycrystal to varying degrees depending on the texture strength. From published values for the elastic compliances for Be, the value of E for single crystals was seen to vary with azimuthal angle from the c axis, from about 350 GPa parallel to c to about 290 GPa parallel to a. The longitudinal sound velocity varies with E, and experimentally measured velocities on single crystal Be are in good agreement with the derived values. The value of E for polycrystalline Be was calculated from simulated textures ranging from 1 MRD (multiples of random distribution), i.e., random, to 2, 4, 8, 20, and 40 MRD. The difference in sound speed from the fastest to the slowest direction for those textured materials were 0, 0.5, 1.0, 1.9, 3.8, and 5.4 percent respectively. Experimentally measured textures, processed by hot-pressing, swaging, and HIPping, were used to illustrate the effect of process variables on the resulting texture. These types of differences in sound speed have tremendous implications for the manner in which the beryllium used for ignition capsules for the National Ignition Facility is fabricated.