ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
Stephan A. Letts, April E. H. Nissen, Pascal J. Orthion, Steven R. Buckley, Evelyn Fearon, Christopher Chancellor, C. Chad Roberts, Bryan K. Parrish, Robert C. Cook
Fusion Science and Technology | Volume 41 | Number 3 | May 2002 | Pages 268-277
Technical Paper | Fourteenth Target Fabrication Specialists' Meeting | doi.org/10.13182/FST02-A17912
Articles are hosted by Taylor and Francis Online.
Recent progress made at LLNL on fabricating NIF scale polyimide capsules using vapor deposition techniques is detailed. Our major focus has been on improving the capsule surf ace finish through better understanding of the origin of surface roughness created during the deposition process and implementation of a post-deposition vapor smoothing procedure prior to imidization. We have determined that the most important factors during the deposition process that impact surface finish include mandrel quality, monomer mixing, selfshadowing, and abrasion. We have shown that high rate deposition (above 10 μm/h) is effective at reducing roughness, which we believe is due to the shorter total time of shell agitation in the bouncer pan. By adjusting the coating conditions, coatings up to 160 μm thick have been reproduc-My fabricated with 300 nm RMS roughness. Solvent vapor smoothing, a new technique also developed at LLNL, further improves the surface to 30 nm RMS.