ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
M. Theobald, O. Legaie, P. Baclet, A. Nikroo
Fusion Science and Technology | Volume 41 | Number 3 | May 2002 | Pages 238-241
Technical Paper | Fourteenth Target Fabrication Specialists' Meeting | doi.org/10.13182/FST02-A17906
Articles are hosted by Taylor and Francis Online.
Amorphous hydrogenated carbon (a-C:H) is the nominal ablator to be used in French inertial confinement fusion (ICF) experiments. These capsules, containing the deuterium-tritium mixture, are developed for the LIL (Laser Integration Line) and the future Megajoule laser (LMJ) of the CEA. Coatings are prepared by glow discharge polymerization (GDP) with trans-2-butene and hydrogen. The films properties have been investigated. Laser fusion targets must have optimized characteristics : a diameter of about 1 mm for LIL targets and about 2.4 mm for LMJ targets, a thickness up to 175 μm, an outer and an inner roughness lower than 20 nm at high modes, a sphericity and a thickness concentricity better than 99%. This paper presents the first microshells obtained at the CEA with a GDP (Glow Discharge Polymerization) coater. Amorphous hydrogenated carbon shells of 175 μm with 1 mm or 2.4 mm diameter have been successfully prepared. The measured roughness at high modes is lower than 10 nm for a 30×30 μm characterization window.