ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
High-temperature plumbing and advanced reactors
The use of nuclear fission power and its role in impacting climate change is hotly debated. Fission advocates argue that short-term solutions would involve the rapid deployment of Gen III+ nuclear reactors, like Vogtle-3 and -4, while long-term climate change impact would rely on the creation and implementation of Gen IV reactors, “inherently safe” reactors that use passive laws of physics and chemistry rather than active controls such as valves and pumps to operate safely. While Gen IV reactors vary in many ways, one thing unites nearly all of them: the use of exotic, high-temperature coolants. These fluids, like molten salts and liquid metals, can enable reactor engineers to design much safer nuclear reactors—ultimately because the boiling point of each fluid is extremely high. Fluids that remain liquid over large temperature ranges can provide good heat transfer through many demanding conditions, all with minimal pressurization. Although the most apparent use for these fluids is advanced fission power, they have the potential to be applied to other power generation sources such as fusion, thermal storage, solar, or high-temperature process heat.1–3
M. Theobald, O. Legaie, P. Baclet, A. Nikroo
Fusion Science and Technology | Volume 41 | Number 3 | May 2002 | Pages 238-241
Technical Paper | Fourteenth Target Fabrication Specialists' Meeting | doi.org/10.13182/FST02-A17906
Articles are hosted by Taylor and Francis Online.
Amorphous hydrogenated carbon (a-C:H) is the nominal ablator to be used in French inertial confinement fusion (ICF) experiments. These capsules, containing the deuterium-tritium mixture, are developed for the LIL (Laser Integration Line) and the future Megajoule laser (LMJ) of the CEA. Coatings are prepared by glow discharge polymerization (GDP) with trans-2-butene and hydrogen. The films properties have been investigated. Laser fusion targets must have optimized characteristics : a diameter of about 1 mm for LIL targets and about 2.4 mm for LMJ targets, a thickness up to 175 μm, an outer and an inner roughness lower than 20 nm at high modes, a sphericity and a thickness concentricity better than 99%. This paper presents the first microshells obtained at the CEA with a GDP (Glow Discharge Polymerization) coater. Amorphous hydrogenated carbon shells of 175 μm with 1 mm or 2.4 mm diameter have been successfully prepared. The measured roughness at high modes is lower than 10 nm for a 30×30 μm characterization window.