ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
Daniel L. Jassby, John A. Schmidt
Fusion Science and Technology | Volume 40 | Number 1 | July 2001 | Pages 52-55
Technical Paper | doi.org/10.13182/FST01-A179
Articles are hosted by Taylor and Francis Online.
The electrical energy requirements and costs of accelerator transmutation of waste (ATW) and fusion plants designed to transmute nuclides of fission wastes are compared. Both systems use the same blanket concept, but tritium breeding is taken into account for the fusion system. The ATW and fusion plants are found to have the same electrical energy requirement per available blanket neutron when the blanket coverage is comparable and the fusion energy gain is near breakeven (Q [approximately equal to] 1), but the fusion plant has only a fraction of the energy requirement when Q >> 1. If the blanket thermal energy is converted to electricity, the fusion plant and ATW have comparable net electrical energy outputs per available neutron when Q 1.5 and the blanket neutron multiplication is large.