ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
F.-Y. Tsai, D. R. Harding, S. H. Chen, T. N. Blanton, E. L. Alfonso
Fusion Science and Technology | Volume 41 | Number 3 | May 2002 | Pages 178-187
Technical Paper | Fourteenth Target Fabrication Specialists' Meeting | doi.org/10.13182/FST02-A17896
Articles are hosted by Taylor and Francis Online.
The processing conditions for vapor-depositing polyimide shells were studied to improve the surface finish, tensile properties, and gas permeability for the inertial confinement fusion application. The vapor-deposited (VDP) polyimide possessed distinct properties from solution-cast Kapton, resulting perhaps from its being physically or chemically crosslinked. The VDP polyimide was characterized to be semicrystalline with molecular chains parallel to the shell’s surface. Varying the imidization conditions, i.e., using different atmospheres, heating rates, and heating durations, increased the gas permeability while maintaining the Young’s modulus. Plastically deforming the shells under biaxial stress increased the permeability by up to 1000-fold, which could be reversed when heated to 350°C. Analyses using x-ray diffraction, infrared spectroscopy, and solubility tests indicated that these modifications in properties may have arisen from changes in the crystallinity, crosslinking, and molecular weight. The low-mode (2 to 20) surface roughness was reduced when the shells were slightly inflated; the high-mode roughness (coating-induced bumps) was increased when the substrate was heated to a temperature of 90°C to 140°C.