ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
H. Ishikawa et al.
Fusion Science and Technology | Volume 54 | Number 1 | July 2008 | Pages 127-130
Technical Paper | Blanket Design | doi.org/10.13182/FST08-A1779
Articles are hosted by Taylor and Francis Online.
Tritium release from thermal neutron-irradiated Li4SiO4 is initiated with the annihilation of E'-centers by recovering O- with diffusion of O-. Electron Spin Resonance (ESR) shows that differences in the formation of irradiation damage between 14 MeV and thermal neutrons in Li4SiO4 result in different tritium release behaviors. The kinetics for the annihilation of irradiation defects has been determined. The contribution of elastic collisions by 14 MeV neutrons was much higher than that of thermal neutrons. Isothermal annealing experiments show that annihilation of irradiation defects consisted of two processes: namely, the fast and slow annihilation processes. Their activation energies were determined to be 0.13 and 0.39 eV, respectively. Comparing the experimental results for the thermal and 14 MeV neutronirradiated Li4SiO4 shows that the activation energies of the slow annihilation process were significantly different. These results relate to the density of irradiation defects, which in turn depend on the contribution of the recoil particles produced by nuclear reactions to form irradiation damaged sites.