ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
INL’s Teton supercomputer open for business
Idaho National Laboratory has brought its newest high‑performance supercomputer, named Teton, online and made it available to users through the Department of Energy’s Nuclear Science User Facilities program. The system, now the flagship machine in the lab’s Collaborative Computing Center, quadruples INL’s total computing capacity and enters service as the 85th fastest supercomputer in the world.
H. Ishikawa et al.
Fusion Science and Technology | Volume 54 | Number 1 | July 2008 | Pages 127-130
Technical Paper | Blanket Design | doi.org/10.13182/FST08-A1779
Articles are hosted by Taylor and Francis Online.
Tritium release from thermal neutron-irradiated Li4SiO4 is initiated with the annihilation of E'-centers by recovering O- with diffusion of O-. Electron Spin Resonance (ESR) shows that differences in the formation of irradiation damage between 14 MeV and thermal neutrons in Li4SiO4 result in different tritium release behaviors. The kinetics for the annihilation of irradiation defects has been determined. The contribution of elastic collisions by 14 MeV neutrons was much higher than that of thermal neutrons. Isothermal annealing experiments show that annihilation of irradiation defects consisted of two processes: namely, the fast and slow annihilation processes. Their activation energies were determined to be 0.13 and 0.39 eV, respectively. Comparing the experimental results for the thermal and 14 MeV neutronirradiated Li4SiO4 shows that the activation energies of the slow annihilation process were significantly different. These results relate to the density of irradiation defects, which in turn depend on the contribution of the recoil particles produced by nuclear reactions to form irradiation damaged sites.