ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
John Sheffield, William Brown, Gary Garrett, James Hilley, Dennis McCloud, Joan Ogden, Thomas Shields, Lester Waganer
Fusion Science and Technology | Volume 40 | Number 1 | July 2001 | Pages 1-36
Technical Paper | doi.org/10.13182/FST40-1-1
Articles are hosted by Taylor and Francis Online.
One option for making fusion power plants that could be competitive with other power plants operating during the 21st century is to make them large, e.g., 3 GW(electric) or more, to take advantage of the expected economies of scale. This study examines the effects on electrical utility system hardware, operations, and reliability of incorporating such large generating units. In addition, the study evaluates the use of the coproduction of hydrogen to reduce the grid-supplied electricity and offer the possibility for electrical load-following.The estimated additional cost of electricity (COE) for a large power plant is ~5 mills/kWh. The estimated total COE for 3- to 4-GW(electric) fusion power plants lies in the range of 37 to 60 mills/kWh.Future hydrogen costs from a variety of sources are estimated to lie in the range of 8 to 10 $/GJ, when allowance is made for some increase in natural gas price and for the possible need for greenhouse gas emission limitations.A number of combinations of fusion plant and electrolyzer were considered, including hot electrolyzers that use heat from the fusion plant. For the optimum cases, hydrogen produced from off-peak power from a 3- to 4-GW(electric) plant is estimated to have a competitive cost. Of particular interest, the cost would also be competitive if some hydrogen were produced during on-peak electricity cost periods. Thus, for a 4-GW(electric) plant, only up to 3 GW(electric) might be supplied to the grid, and load-following would be possible, which would be a benefit to the utility system.