ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Chris Wagner: The role of Eden Radioisotopes in the future of nuclear medicine
Chris Wagner has more than 40 years of experience in nuclear medicine, beginning as a clinical practitioner before moving into leadership roles at companies like Mallinckrodt (now Curium) and Nordion. His knowledge of both the clinical and the manufacturing sides of nuclear medicine laid the groundwork for helping to found Eden Radioisotopes, a start-up venture that intends to make diagnostic and therapeutic raw material medical isotopes like molybdenum-99 and lutetium-177.
B. Bornschein
Fusion Science and Technology | Volume 54 | Number 1 | July 2008 | Pages 59-66
Technical Paper | Iter and Fusion | doi.org/10.13182/FST54-59
Articles are hosted by Taylor and Francis Online.
The most sensitive way to determine the neutrino mass scale without further assumptions is to measure the shape of a tritium beta spectrum near its endpoint. Tritium is the nucleus of choice because of its low endpoint energy, superallowed decay, simple nuclear properties and simple atomic structure. Tritium beta decay experiments have been performed for more than 60 years yielding in an upper limit of the electron neutrino mass of 2 eV/c2. The Karlsruhe Tritium Neutrino experiment (KATRIN) will improve the sensitivity on the neutrino mass by another order of magnitude. This article gives a short survey of 6 decades of tritium beta decay experiments and discusses the future steps.