ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
World Bank, IAEA partner to fund nuclear energy
The World Bank and the International Atomic Energy Agency signed an agreement last week to cooperate on the construction and financing of advanced nuclear projects in developing countries, marking the first partnership since the bank ended its ban on funding for nuclear energy projects.
A. Widdowson et al.
Fusion Science and Technology | Volume 54 | Number 1 | July 2008 | Pages 51-54
Technical Paper | Iter and Fusion | doi.org/10.13182/FST08-A1763
Articles are hosted by Taylor and Francis Online.
The retention of tritium (T) by carbon based deposits on tokamak surfaces is of increasing concern to the fusion community as the scale of tritium retention by this mechanism could be a limiting factor for the operation of fusion reactors, such as ITER. Hence there is a need to investigate ways of mitigating T retention and also for detritiating surfaces by either desorption of T or removal of tritiated deposits. The results of the removal of codeposits from CFC tiles by pulsed laser ablation are reported here. The results show that it is possible to completely remove a 300m thick hydrogen isotope rich carbon film at a rate of 12x10-3m2/hr by this method and that with optimisation of the laser parameters there is scope to improve the treatment rates to provide a useful tool for managing T inventory in tokamaks.