ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
Boris Yu. Goloborodsky, Vladimir V. Ovchinnikov, Vladimir A. Semionkin
Fusion Science and Technology | Volume 39 | Number 3 | May 2001 | Pages 1217-1228
Technical Paper | doi.org/10.13182/FST01-A176
Articles are hosted by Taylor and Francis Online.
The effect is studied of ion bombardment (Ar+, E = 20 keV, j = 100 A/cm2, F = 5 × 1016 to 1018 cm-2) and thermal annealing on the atomic and magnetic structure of the FePd2Au alloy after 80% cold plastic deformation and quenching from 1200°C. It is established by the Mössbauer effect and X-ray diffraction that ion irradiation at 350°C (for 1.5 to 30 min) causes formation in the disordered face-centered-cubic matrix of a long-range atomic order (of an Fe atom sublattice at an anomalously large depth up to 20 m, at an ion projected range of ~13 nm) accompanied by ferromagnetic to asperomagnetic phase transition (Tmeas = 77 K). Annealing at T = 350°C up to 30 min in the absence of irradiation does not result in any noticeable changes in the atomic and magnetic structure. Atom mobility (the ordered structure formation rate) in the course of irradiation at 350°C is approximately the same as observed in the case of annealing at 700°C.