ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Hanford completes 20 containers of immobilized waste
The Department of Energy has announced that the Hanford Site’s Waste Treatment and Immobilization Plant (WTP) has reached a commissioning milestone, producing more than 20 stainless steel containers of immobilized low-activity radioactive waste.
S. E. Sharapov, L.-G. Eriksson, A. Fasoli, G. Gorini, J. Källne, V. G. Kiptily, A. A. Korotkov, A. Murari, S. D. Pinches, D. S. Testa, P. R. Thomas
Fusion Science and Technology | Volume 53 | Number 4 | May 2008 | Pages 989-1022
Technical Paper | Special Issue on Joint European Torus (jet) | doi.org/10.13182/FST08-A1745
Articles are hosted by Taylor and Francis Online.
Studies establishing key phenomena and developing diagnostics for energetic particle physics, which are essential for the next step burning plasma experiments such as the International Thermonuclear Experimental Reactor (ITER), have been performed at the Joint European Torus (JET). Experiments have demonstrated clear self-heating of deuterium-tritium (D-T) plasma by alpha particles as a maximum in electron temperature at an optimum mixture of 60 ± 20% tritium. The change in electron temperature produced by alpha heating, Te(0) = 1.3 ± 0.23 keV, was as expected from classical heating, whereas the heating of thermal ions was higher than expected from reference deuterium discharges. Alfvén eigenmodes were stable in the highest fusion performance D-T plasmas, in agreement with the modeling. Systematic studies on the existence and properties of Alfvén eigenmodes with external antenna driving and detecting Alfvén eigenmodes are presented. The formation of fuel ion tails due to alpha-particle knock-on effects is described as derived from neutral particle analyzer and neutron emission spectrometry in D-T experiments. The gamma-ray diagnostics are shown to measure profiles and energy distribution functions of high-energy ions and alpha particles. Time- and space-resolved gamma-ray images demonstrated for the first time the possibility of measuring several types of energetic ions simultaneously. The novel technique of detecting unstable Alfvén eigenmodes with interferometry is found to be superior in detecting core-localized Alfvén eigenmodes.