ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Kai Masuda, Kenji Taruya, Takahiro Koyama, Hirofumi Hashimoto, Kiyoshi Yoshikawa, Hisayuki Toku, Yasushi Yamamoto, Masami Ohnishi, Hiroshi Horiike, Nobuyuki Inoue
Fusion Science and Technology | Volume 39 | Number 3 | May 2001 | Pages 1202-1210
Technical Paper | doi.org/10.13182/FST01-A174
Articles are hosted by Taylor and Francis Online.
Performance characteristics of an inertial electrostatic confinement fusion triple-grid system are experimentally studied to provide an ample fusion reaction rate under a lower-gas-pressure region to make the operation free from glow discharge restrictions between the discharge voltage, current, and gas pressure. With a filament to provide sufficient electrons, the operating gas pressure is found to reduce down to 1/5 for the same discharge current and voltage. Although the gas pressure region that was achieved still remains the region where the fusion reaction between the ion beam and background gas is dominant, the neutron yield normalized by the gas pressure in the triple-grid system shows higher value than the conventional single-grid system.